Почечные канальцы

23.01.2018

Канальцевую часть нефрона принято делить на четыре отдела:

• главный (проксимальный);

• тонкий сегмент петли Генле;

• дистальный;

• собирательные трубки.

Главный (проксимальный) отдел состоит из извитой и прямой частей. Клетки извитой части имеют более сложное строение, чем клетки других отделов нефрона. Это высокие (до 8 мкм) клетки со щеточной каемкой, внутриклеточными мембранами, большим числом правильно ориентированных митохондрий, хорошо развитыми пластинчатым комплексом и эндоплазматической сетью, лизосомами и другими ультраструктурами (рис. 1.6 и 1.7). В их цитоплазме содержится много аминокислот, основных и кислых белков, полисахаридов и активных SH-групп, высокоактивных дегидрогеназ, диафораз, гидролаз.

Клетки прямой (нисходящей) части главного отдела в основном имеют то же строение, что и клетки извитой части, но пальцевидные выросты щеточной каемки более грубые и короткие, внутриклеточных мембран и митохондрий меньше, они не так строго ориентированы, значительно меньше цитоплазматических гранул.

Щеточная каемка состоит из многочисленных пальцевидных выростов цитоплазмы, покрытых клеточной мембраной и гликокаликсом. Их число на поверхности клетки достигает 6500, что увеличивает рабочую площадь каждой клетки в 40 раз. Эти сведения дают представление о поверхности, на которой совершается обмен в проксимальном отделе канальцев.

В щеточной каемке доказана активность щелочной фосфатазы, АТФазы, 5-нуклеотидазы, аминопептидазы и ряда других ферментов. Мембрана щеточной каемки содержит натрийзависимую транспортную систему. Считают, что гликокаликс, покрывающий микроворсинки щеточной каемки, проницаем для малых молекул. Большие молекулы поступают в каналец с помощью пиноцитоза, который осуществляется благодаря кратерообразным углублениям в щеточной каемке.

Внутриклеточные мембраны образованы не только изгибами БМ клетки, но и латеральными мембранами соседних клеток, которые как бы перекрывают друг друга. Внутриклеточные мембраны являются по существу и межклеточными, что служит активному транспорту жидкости. При этом главное значение в транспорте воды придается базальному лабиринту, образованному выпячиваниями БМ внутрь клетки; он рассматривается как «единое диффузионное пространство».

Многочисленные митохондрии расположены в базальной части между внутриклеточными мембранами, что и создает впечатление их правильной ориентации. Каждая митохондрия, таким образом, заключена в камере, образованной складками внутри- и межклеточных мембран. Это позволяет продуктам ферментативных процессов, развивающихся в митохондриях, легко выходить за пределы клетки. Энергия, вырабатываемая в митохондриях, служит как транспорту вещества, так и секреции, осуществляемой с помощью гранулярной эндоплазматической сети и пластинчатого комплекса, который претерпевает циклические изменения в различные фазы диуреза.

Ультраструктура и ферментохимия клеток канальцев главного отдела объясняют его сложную и дифференцированную функцию. Щеточная каемка, как и лабиринт внутриклеточных мембран, является своеобразным приспособлением для колоссальной по объему функции ре-абсорбции, выполняемой этими клетками. Ферментная транспортная система щеточной каемки, зависимая от натрия, обеспечивает реабсорбцию глюкозы, аминокислот, фосфатов. С внутриклеточными мембранами, особенно с базальным лабиринтом, связывают реабсорбцию воды, глюкозы, аминокислот, фосфатов и ряда других веществ, которую выполняет натрийзависимая транспортная система мембран лабиринта.

Особый интерес представляет вопрос о канальцевой реабсорбции белка. Считают доказанным, что весь фильтрующийся в клубочках белок ре абсорбируется в проксимальном отделе канальцев, чем объясняется его отсутствие в моче здорового человека. Это положение основывается на многих исследованиях, выполненных, в частности, с помощью электронного микроскопа. Так, транспорт белка в клетке проксимального канальца изучен в опытах с микроинъекцией меченного 131I альбумина непосредственно в каналец крысы с последующей электронно-микроскопической радиографией этого канальца. Альбумин находят прежде всего в инвагинатах мембраны щеточной каемки, затем в пиноцитозных пузырьках, которые сливаются в вакуоли. Белок с вакуолей появляется затем в лизосомах и пластинчатом комплексе и расщепляется гидролитическими ферментами. Таким образом, в нефроците существует вакуолярно-лизосомальная система реабсорбции белка.

В связи с этими данными становятся понятными механизмы «повреждения» канальцев главного отдела. При HC любого генеза, протеинурических состояниях изменения эпителия канальцев проксимального отдела в виде белковой дистрофии (гиалиново-капельной, гидропической) отражают резорбционную недостаточность вакуолярно-лизосомальной системы и системы базального лабиринта канальцев в условиях повышенной порозности гломерулярного фильтра для белка. Однако не всегда можно объяснить изменения канальцев при HC первично-дистрофическими процессами. В равной мере нельзя рассматривать и протеинурию как результат только повышенной порозности гломерулярного фильтра. Протеинурия при HC отражает как первичное повреждение фильтра почки, так и вторичное истощение (блокаду) ферментных систем канальцев, осуществляющих реабсорцию белка и воды.

При ряде инфекций и интоксикаций блокада ферментных систем клеток канальцев главного отдела может наступить остро, поскольку эти канальцы первыми подвергаются действию токсинов и ядов при их элиминации почками. Активация гидролаз лизосомного аппарата клетки завершает в ряде случаев дистрофический процесс развитием некроза клетки (острый нефроз). В свете приведенных данных становится понятной патология «выпадения» ферментов канальцев почек наследственного порядка (так называемые наследственные канальцевые ферментопатии). Определенная роль в повреждении канальцев (тубулолизис) отводится антителам, реагирующим с антигеном тубулярной базальной мембраны и щеточной каемки.

Клетки тонкого сегмента петли Генле характеризуются тем, что внутриклеточные мембраны и пластинки пересекают тело клетки на всю ее высоту, образуя в цитоплазме щели шириной до 7 нм. Создается впечатление, что цитоплазма состоит из отдельных сегментов, причем часть сегментов одной клетки как бы вклинивается между сегментами соседней клетки. Ферментохимия тонкого сегмента отражает функциональную особенность этого отдела нефрона, который как дополнительное приспособление уменьшает до минимума фильтрационный заряд воды и обеспечивет ее «пассивную» резорбцию. Соподчиненная работа тонкого сегмента петли Генле, канальцев прямой части дистального отдела, собирательных трубок и прямых сосудов пирамид обеспечивает осмотическое концентрирование мочи на основе противоточного умножителя. Представления о пространственной организации противоточно-множительной системы (рис. 1.8) убеждают в том, что концентрирующая деятельность почки обеспечивается не только структурно-функциональной специализацией различных отделов нефрона, но и высокоспециализированным взаиморасположением канальцевых структур и сосудов почки.

Дистальный отдел канальцев состоит из прямой (восходящей) и извитой частей. Клетки дистального отдела ультраструктурно напоминают клетки проксимального отдела. Они богаты сигарообразными митохондриями, заполняющими пространства между внутриклеточными мембранами, а также цитоплазматическими вакуолями и гранулами вокруг ядра, расположенного апикально, но лишены щеточной каемки. Эпителий дистального отдела богат аминокислотами, основными и кислыми белками РНК, полисахаридами и реактивными SH-группами; для него характерна высокая активность гидролитических, гликолитических ферментов и ферментов цикла Кребса.

Сложность устройства клеток дистальных канальцев, обилие митохондрий, внутриклеточных мембран и пластического материала, высокая ферментативная активность свидетельствуют о сложности их функции — факультативной реабсорбции, направленной на поддержание постоянства физико-химических условий внутренней среды. Факультативная реабсорбция регулируется в основном гормонами задней доли гипофиза, надпочечников и ЮГА почки. Местом приложения действия антидиуретического гормона гипофиза (АДГ) в почке, «гистохимическим плацдармом» этой регуляции служит система гиалуроновая кислота — гиалуронидаза, заложенная в пирамидах, главным образом в их сосочках. Альдостерон, а по данным некоторых авторов, и кортизон влияют на уровень дистальной реабсорбции прямым включением в ферментную систему клетки, обеспечивающую перенос ионов натрия из просвета канальца в интерстиций почки. Особое значение в этом процессе имеет эпителий прямой части дистального отдела, причем дистальный эффект действия альдостерона опосредован секрецией ренина, закрепленной за клетками ЮГА. Ангиотензин, образующийся под действием ренина, не только стимулирует секрецию альдостерона, но и участвует в дистальной реабсорбции натрия.

В извитой части дистального отдела канальца, там, где он подходит к полюсу сосудистого клубочка, различают macula densa. Эпителиальные клетки в этой части становятся цилиндрическими, их ядра — гиперхромными; они располагаются палисадообразно, причем непрерывной базальной мембраны здесь нет. Клетки macula densa имеют тесные контакты с гранулированными эпителиоидными клетками и lacis-клетками ЮГА, что обеспечивает влияние химического состава мочи дистального канальца на гломерулярный кровоток и, наоборот, гормональные влияния ЮГА на macula densa. Доказана секреция калликреина клетками дистальных канальцев, показана топографическая близость этих клеток к клеткам macula densa.

Co структурно-функциональной особенностью канальцев дистального отдела, их повышенной чувствительностью к кислородному голоданию связано до некоторой степени их избирательное поражение при острых гемодинамических повреждениях почек, в патогенезе которых основную роль играют глубокие нарушения почечного кровообращения с развитием аноксии тубулярного аппарата. В условиях острой аноксии клетки дистальных канальцев подвергаются воздействию содержащей токсичные продукты кислой мочи, что ведет к их поражению вплоть до некроза. При хронической аноксии клетки дистального канальца чаще, чем проксимального, подвергаются атрофии.

Собирательные трубки, выстланные кубическим, а в дистальных отделах цилиндрическим эпителием (светлые и темные клетки) с хорошо развитым базальным лабиринтом, высокопроницаемы для воды. С темными клетками связывают секрецию ионов водорода, в них обнаружена высокая активность карбоангидразы. Доказано, что нефроциты собирательных трубок секретируют простагландины. Пассивный транспорт воды в собирательных трубках обеспечивается особенностями функции противоточно-множительной системы.

Заканчивая описание гистофизиологии нефрона, следует остановиться на его структурно-функциональном различии в разных отделах почки. На этом основании выделяют кортикальные и юкстамедуллярные нефроны, различающиеся строением клубочков и канальцев, а также своеобразием функции; различно и кровоснабжение этих нефронов.

Имя:*
E-Mail:
Комментарий: