Нервная трофика и дистрофический процесс

15.08.2016
Нервная трофика влияние нервов на ткань, обусловливающее изменение обмена веществ в ней согласно потребностям в определенный момент. Трофическое действие нервов тесно связано с другими их функциями (чувствительной, двигательной, секреторной) и вместе с ними обеспечивает оптимальную функцию каждого органа.

Первые доказательства того, что нервы имеют трофическую функцию, получил еще в 1824 г. французский ученый Ф. Мажанди. В экспериментах с перерезкой тройничного нерва у кроликов он обнаружил образование язв в зоне чувствительной денервации (глаз; рис. 77).
Нервная трофика и дистрофический процесс

В дальнейшем модель нейрогенной язвы многократно воспроизводилась и при перерезке других нервов, например седалищного. Трофические расстройства возникают в любом органе, если нарушается его иннервация посредством вмешательства на нервах (афферентных, эфферентных, автономных) или нервных центрах. Медицинская практика свидетельствует также о том, что повреждение нервов (травма, воспаление) угрожает образованием язвы или другими расстройствами (отек, эрозия, некроз) в соответствующей зоне.

Биохимические, структурные и функциональные изменения в денервированных тканях. Экспериментальные исследования показывают, что патогенные влияния на периферический нерв всегда обусловливают изменения обмена веществ (углеводов, липидов, белков, нуклеиновых кислот и т. д.) в соответствующем органе. Эти изменения носят не только количественный, но и качественный характер. Общая тенденция изменений метаболизма заключается в том, что он приобретает эмбриональный характер, т. е. гликолитические процессы начинают преобладать над окислительными. Ослабевает мощность цикла Кребса, уменьшается выход макроэргов, снижается энергетический потенциал.

При нарушении иннервации в тканях возникают характерные морфологические изменения. Если речь идет о роговице, коже или слизистой оболочке, то в них последовательно развиваются все стадии воспаления. Как следствие, образуется язва, не имеющая тенденции к заживлению. В детальных исследованиях установлены изменения органоидов, в частности уменьшение количества митохондрий, осветление их матрикса. Очевидно, с этим связано нарушение окислительного фосфорилирования и Са2+-аккумулирующей способности митохондрий, а одновременно — и энергетических возможностей клетки. В денервированных тканях может снижаться митотическая активность.

Денервированная ткань реагирует на многие гуморальные факгоры не так, как нормальная. Речь идет прежде всего о медиаторах нервной системы. В. Кеннон установил, что скелетные мышцы, лишенные в одном случае симпатических, а в другом — холинергических нервов, реагируют соответственно на адреналин и ацетилхолин сильнее, чем в норме. Так был открыт закон денервации — повышенной чувствительности денервированных структур. В частности, это обусловлено тем, что холинорецепторы, которые в норме сосредоточены лишь в области нервно-мышечных синапсов, после денервации появляются на всей поверхности мембраны мышечного волокна. Необычность ответа денервированных структур может заключаться не только в его усилении, но и в извращении, когда, например, вместо расслабления мышц сосудов происходит их сокращение, что может существенно отразиться на состоянии сосудов, кровообращения тканей и т. д.

Важным является вопрос о существовании специальных трофических нервов.

В свое время Ф. Мажанди высказал мнение, что кроме чувствительных, двигательных и секреторных нервов существуют еще особые трофические, которые регулируют питание ткани.

Позднее И.П. Павлов в эксперименте на животных среди нервов, идущих к сердцу, выделил такую ветвь, которая, не влияя на кровообращение, повышала силу его сокращений. Этот нерв он назвал усиливающим и признал его сугубо трофическим. Полную и гармоническую иннервацию органа, по мнению И.П. Павлова, обеспечивают три вида нервов: функциональные, сосудодвигательные (регулирующие поступление питательных веществ) и трофические (определяющие окончательную утилизацию этих веществ).

Такого же мнения придерживался и Л.А. Орбели, который вместе с А.Г. Гинецинским в 1924 г. доказал, что изолированная (без кровообращения) мышца лягушки, утомленная при длительном раздражении двигательного нерва, снова начинает сокращаться, если стимулировать симпатический нерв. Трофическая функция симпатического нерва — это влияние на метаболизм, подготовка органа к действию и адаптация его к будущей работе, которая осуществляется благодаря двигательному нерву.

В то же время А.Д. Сперанский полагал, что все нервы влияют на метаболизм тканей, нетрофических нервов нет, “нерв только потому и функциональный, что он трофический”.

Механизмы трофического влияния нервов. Нервные импульсы, приводя в действие орган (например, мышцу), одновременно изменяют обмен веществ в клетке по схеме: медиатор—активация вторичных посредников—активация генетического аппарата, ферментов. Обмен веществ в клетках изменяется также под влиянием сосудодвигательных нервов, которые расширяют или суживают сосуды и таким образом изменяют приток питательных веществ. Кроме этих двух (функционального (импульсного) и сосудистого) влияний нервной системы на обмен веществ у нервной клетки есть третье — неимпульсное, или собственно трофическое. Оно обеспечивается движением аксоплазмы как от нейрона к эффекторной клетке (ортоградно), так и в обратном направлении (ретроградно). С помощью ортоградного аксотока иннервированные клетки получают трофические вещества, продуцирующиеся нейронами, а посредством ретроградного аксотока клетки-мишени (мышечные, эпителиальные) поставляют такие вещества нейронам. Эти вещества получили название нейротрофических факторов, или нейротрофинов.

В настоящее время из различных нервных струкгур, клеток-сателлитов (глиальные клетки, леммоциты), а также из тканей-мишеней и некоторых органов выделены отдельные нейротрофины, расшифрована их структура и изучено биологическое действие. Это фактор роста нервов и родственные с ним пептиды, такие как мозговой нейротрофический фактор, нейротрофины-3, -4, -5, -6.

Мозговой нейротрофический фактор образуется непосредственно в нейронах, транспортируется к нервным окончаниям и, выделяясь оттуда, поддерживает нормальное состояние постсинаптического нейрона.

Другие нейротрофины связываются с рецепторами нервных окончаний, попадают в нейроплазму и ретроградно перемещаются к телу нейрона, где активируют синтез веществ, необходимый для жизнедеятельности нервной клетки.

К этому семейству нейротрофинов в определенной мере относятся фактор роста эпидермиса, трансформирующие факторы роста (α и β), инсулиноподобные факторы роста I и II.

Нейротрофические факторы включают нейролейкин, цилиарный и глиальный нейротрофические факторы, тромбоцитарный фактор роста, а также кислый и основной факторы роста фибробластов. Нейротрофические свойства выявлены у субстанции Р, опиоидных пептидов, атриального натрийуретрического пептида. Кроме того, нейротрофическое действие оказывают гликолипиды — ганглиозиды, а также некоторые гормоны — тироксин, тестостерон, кортикотропин, инсулин.

Наиболее хорошо изучен фактор роста нервов. Он содержится в различных тканях животных и человека, но наибольшее количество его выявлено в слюнных железах самцов мышей. Этот фактор способствует эмбриональному развитию и выживанию симпатических и некоторых сенсорных нейронов, а также холинергических нейронов ЦНС, ответственных за память. Если получить антитела к фактору роста нервов и ввести их новорожденным животным, то можно вызвать почти полную деструкцию симпатических узлов (иммуносимпатэктомия).

Главными объектами действия фактора роста эпидермиса являются глиальные клетки (астроциты), леммоциты, клетки ЦНС, которые в свою очередь продуцируют такие нейротрофические факторы, как глиальный, цилиарный и фактор роста нервов и др.

Цилиарный нейротрофический фактор создает условия для выживания моторных, сенсорных и симпатических нейронов. Нейролейкин влияет как на двигательные, так и на чувствительные нейроны и продуцируется слюнными железами, скелетными мышцами и стимулированными Т-лимфоцитами.

Экспериментальные исследования доказали, что дефицит нейротрофинов или их рецепторов может обусловливать развитие нейродегенеративных болезней. Например, дефицит мозгового нейротрофического фактора у мышей вызывает гибель периферических чувствительных нейронов и дегенеративные изменения в нейронах вестибулярных нервов. У животных с наследственным нарушением образования нейротрофина-3 наблюдается гибель механорецепторов кожи.

В патогенезе нейрогенной дистрофии определяющую роль играет нарушение синтеза и аксонального транспорта нейротрофических факторов. Однако, анализируя процесс, следует руководствоваться тем, что трофическая функция осуществляется по принципу рефлекса и нужно оценивать значение каждого его звена в развитии дистрофического процесса.

Чувствительный нерв, очевидно, играет в этом особую роль, поскольку, во-первых, прерывается передача информации в нервный центр из зоны денервации, во-вторых — поврежденный чувствительный нерв является источником патологической импульсации, в том числе и болевой, в-третьих, — из него выходят центрифугальные (центробежные) влияния на ткань. Доказано, в частности, что через чувствительные нервы из аксоплазмы в ткань поступает субстанция Р, которая влияет на метаболизм и микроциркуляцию,

О значении нервных центров в развитии дистрофии свидетельствуют опыты А.Д. Сперанского с избирательным повреждением центров гипоталамуса. Результатом этого является образование трофических язв в различных органах на периферии.

Роль эфферентных нервов в дистрофии заключается в том, что прекращается или извращается их функция (двигательная, секреторная). Прекращаются импульсная активность, синтез медиаторов (адреналина, серотонина, ацетилхолина и т. д.), изменяются синтез и аксональный транспорт нейротрофинов.

При развитии нейрогенной дистрофии в клетках нарушаются процессы транскрипции и трансляции, синтез ферментов, уменьшается выход макроэргов, обмен приобретает более упрощенный характер. Подвергаются изменениям транспортные функции мембран клеток. Орган с нарушенной иннервацией может стать источником аугоантигенов. Процесс усложняется тем, что к сугубо ней-ротрофическим изменениям добавляются нарушения крово- и лимфообращения (микроциркуляция) с развитием гипоксии.

Таким образом, нейрогенная дистрофия — это сложный многофакториальный процесс, который начинается с того, что нервная система перестает адекватно влиять на обмен веществ в тканях, и, как следствие, возникают сложные нарушения метаболизма, структуры и функции (схема 37).
Нервная трофика и дистрофический процесс