Главная
Новости
Строительство
Ремонт
Дизайн и интерьер
Полезные советы




26.07.2021


10.07.2021


10.07.2021


06.07.2021


03.07.2021





Яндекс.Метрика





Теорема Эренфеста

19.12.2020

Теорема Эренфеста (Уравнения Эренфеста) — утверждение о виде уравнений квантовой механики для средних значений наблюдаемых величин гамильтоновых систем. Эти уравнения впервые получены Паулем Эренфестом в 1927 году.

Формулировка теоремы:

В квантовой механике средние значения координат и импульсов частицы, а также силы, действующей на неё, связаны между собой уравнениями, аналогичными соответствующим уравнениям классической механики, то есть при движении частицы средние значения этих величин в квантовой механике изменяются так, как изменяются значения этих величин в классической механике.

Полная аналогия имеет место только при условии выполнения ряда требований.

Уравнение Эренфеста для среднего значения квантовой наблюдаемой гамильтоновой системы имеет вид

d d t ⟨ A ⟩ = 1 i ℏ ⟨ [ A , H ] ⟩ + ⟨ ∂ A ∂ t ⟩ , {displaystyle {frac {d}{dt}}langle A angle ={frac {1}{ihbar }}langle [A,H] angle +leftlangle {frac {partial A}{partial t}} ight angle ,}

где   A {displaystyle A} — квантовая наблюдаемая,   H {displaystyle H} — оператор Гамильтона системы, угловыми скобками обозначено взятие среднего значения, а квадратные скобки обозначают коммутатор. Это уравнение может быть выведено из уравнения Гейзенберга.

В частном случае, средние значения координаты   q {displaystyle q} и импульса   p {displaystyle p} частицы описываются уравнениями

d d t ⟨ q ⟩ = 1 m ⟨ p ⟩ , {displaystyle {frac {d}{dt}}langle q angle ={frac {1}{m}}langle p angle ,} d d t ⟨ p ⟩ = − ⟨ ∂ U ∂ q ⟩ , {displaystyle {frac {d}{dt}}langle p angle =-leftlangle {frac {partial U}{partial q}} ight angle ,}

где   m {displaystyle m} — масса частицы,   U ( q ) {displaystyle U(q)} — оператор потенциальной энергии частицы.

Уравнения Эренфеста для средних координат и импульсов являются квантовыми аналогами системы канонических уравнений Гамильтона и задают квантовое обобщение второго закона Ньютона.